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Distributed networks of health-care data sources are increasingly being utilized to conduct pharmacoepidemio-
logic database studies. Such networks may contain data that are not physically pooled but instead are distributed
horizontally (separate patients within each data source) or vertically (separate measures within each data source)
in order to preserve patient privacy. While multivariable methods for the analysis of horizontally distributed data
are frequently employed, few practical approaches have been put forth to deal with vertically distributed health-
care databases. In this paper, we propose 2 propensity score–based approaches to vertically distributed data
analysis and test their performance using 5 example studies. We found that these approaches produced point es-
timates close to what could be achieved without partitioning. We further found a performance benefit (i.e., lower
mean squared error) for sequentially passing a propensity score through each data domain (called the “sequential
approach”) as compared with fitting separate domain-specific propensity scores (called the “parallel approach”).
These results were validated in a small simulation study. This proof-of-concept study suggests a new multivari-
able analysis approach to vertically distributed health-care databases that is practical, preserves patient privacy,
and warrants further investigation for use in clinical research applications that rely on health-care databases.

database linkage; databases; database studies; epidemiologic methods; pharmacoepidemiology; propensity
scores

Abbreviations: ANOVA, analysis of variance; MSE, mean squared error; PS, propensity score.

Distributed systems for the analysis of electronic health-
care data are increasingly being used to support large-scale
analyses of medical interventions and products (1–3). Such
systems may be horizontally distributed—that is, data on
separate patients are combined across distinct databases to in-
crease study size and population heterogeneity. An example
is the Food and Drug Administration’s Sentinel Initiative,
which pools analyses across multiple data partners, with the
data residing locally (1). Increasingly researchers deal with
vertically distributed databases, in which different covariates
on the same set of patients reside in multiple databases that
are physically separated to reduce the risk of identifying pa-
tients. For example, information on important medication-use
variables may be available in insurance claims data, while de-
tailed medical test results might be available only in electronic
health records. Analysis of vertically distributed databases

attempts to make use of the increased depth of clinical infor-
mation available on patients from multiple sources, and thus
improve confounding adjustment in multivariable analyses.
An example of this scenario is the linkage of administrative
claims to genomic data (Figure 1). A defining feature of many
distributed networks is that all data contributors control their
own data, storing it behind their own firewall and performing
as much analysis as possible on their own hardware before
submitting summary results to a coordinating center (1, 4–6).
This arrangement is intended to protect both the privacy of pa-
tients (by avoiding transfer of potentially identifying data)
and the proprietary data related to the business practices of
data owners.

Several strategies have been proposed for performing multi-
variable analysis of horizontally distributed data, including
meta-analytical methods to pool site-specific estimates (7, 8),
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propensity score (PS)–based methods to reduce covariate-
sharing (9, 10), and methods that share only limited strati-
fied tabular data (7, 11), as well as strategies that allow for
traditional computation with no physical data-sharing at all,
such as distributed regression (12–14). However, few meth-
ods have been proposed that allow investigators to conduct
multivariable adjusted analyses when covariate data on the
same patients are in physically separate locations (13). Dis-
tributed regression routines may ultimately enable trad-
itional analysis across distributed networks, but there are
practical barriers to this approach. For instance, distributed
regression approaches need to transmit data back and forth
between sources at each iteration of the fitting routine, re-
quiring repeated access to each data source, which data con-
tributors may find objectionable (15, 16).

Methods for such vertically distributed multivariable anal-
yses that are statistically valid, privacy-preserving, and oper-
ationally practical need to be further developed as more
patient-level electronic data sources become available for
distributed analyses, as privacy protection limits the phys-
ical pooling of all covariates (17). We developed a suite of
PS-based approaches for multivariable analysis of vertically
distributed data and demonstrated their performance using
data from 5 previously published cohort studies on medication-
outcome associations. We then assessed variations on how
these approaches were applied.

METHODS

Building vertically distributed data systems for 5
example studies

We used data from 5 previously published cohort studies
(18–21) of drug exposures to illustrate vertically distributed
analyses in a range of settings. Table 1 summarizes the key
characteristics of each example study. In each study cohort,

we used the high-dimensional PS algorithm’s covariate se-
lection procedure (18) to empirically identify up to 4,800
covariates for consideration as confounders. Using raw
claims data, this procedure identifies potentially confound-
ing characteristics (defined by the presence or absence of
diagnosis, procedure, or drug codes) according to their asso-
ciations with the outcome of interest and their prevalence in
the exposed and unexposed populations. The high-dimensional
PS procedure selects the top 1,200 covariates from each of 4
domains: in-hospital diagnoses and procedures, outpatient
diagnoses and procedures, outpatient pharmacy prescription
drug-filling, and demographic factors. The demographic infor-
mation included age at cohort entry, sex, race, and calendar
year of cohort entry. Although data from these 4 domains
were all available in a single claims database, we mimicked a
vertically distributed data system by treating the 4 domains as
distinct data sources between which only select patient-level
information, including patient identification number, exposure
indicator, outcome indicator, index date, and estimated PSs,
could be shared in order to preserve patient privacy (9, 10).
We further assumed that age and sex information was avail-
able in each data domain, a realistic assumption for most data
sources in health care.

PSs for multivariable adjustment in distributed systems
concealing patient characteristics

A PS is a subject’s estimated probability of receiving the
exposure of interest, conditional on the measured covariates,
and is generally estimated via logistic regression. It has been
recognized in the horizontally distributed data setting that
the dimension-reducing property of PSs can be utilized for
privacy-preserving multivariable distributed analyses (9,
10). The key idea is that in each horizontally distributed
study center, a PS is estimated from a logistic regression
model that includes the full covariate vector. Each center
then shares a nonidentifiable individual-level file containing,
at a minimum, 3 variables: exposure status, outcome status,
and the estimated PS—information that makes it impossible
to identify a patient. Time-to-event variables and variables
that identify broad subgroups may also be included without
revealing patient identity (22). These individual-level data
can then be pooled and analyzed centrally, stratifying by
study center.

This approach can be expanded to accommodate verti-
cally distributed data by separately estimating PSs within
distinct data domains (e.g., claims, genetic data) and then
combining these PSs into a single value. Such an approach
requires a unique identifier in each data domain to allow
linkage (Figure 1). This joined identifier could be determin-
istic (e.g., an insurance identification number) or probabilis-
tic (e.g., defined through patterns of health-care utilization
or other measures), but it should not contain any personal
health information. Since PSs are estimated by modeling ex-
posure status, which is usually available in only a single data
domain (e.g., medication use in the pharmacy prescription-
filling file), this approach additionally assumes that exposure
information can be shared with each of the data domains.

The first step of the PS approach is therefore to sort each
data domain by a joint patient identification number and
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Figure 1. Structure of vertically and horizontally partitioned health-
care databases. In this example, the analysis of interest concerns the
effect of an exposure A on an outcome Y, wherein adjustment is
needed for confounders X1–X6. In a horizontally partitioned system,
different patient subsets are contributed by different sources (here,
centers 1 and 2), while in a vertically partitioned system different patient
covariates are contributed by different sources (here, medical insur-
ance claims and a genomic database). ID, identification.
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Table 1. Overview of 5 Example Studies Used in Empirical Assessment of Parallel and Sequential Propensity Score Approaches to Analysis of Vertically Distributed Data, 2009–2014

First Author, Year
(Reference No.) Data Source Exposure Comparator Outcome No. of

Events
No. of

Persons

No. of Covariates Outcome
Model

OR/HRa
Follow-up
ModelbInpatient Outpatient Drugs Crude Adjusted

Schneeweiss,
2009 (18)

PACE/
Medicare

COX-2 inhibitors Nonselective
NSAIDs

Gastrointestinal
bleeding

552 49,653 455 936 496 Logistic 1.09 0.86 Fixed

Schneeweiss,
2009 (18)

PACE/
Medicare

Statins Glaucoma drugs Mortality 1,739 36,122 696 1,185 486 Logistic 0.56 0.88 Fixed

Schneeweiss,
2010 (19)

British
Columbia
PharmaNet

Tricyclics SSRIs Suicide or
attempted
suicide

166 13,942 10 461 85 Cox 0.59 0.78 As-treated

Patorno,
2010 (20)

HealthCore Gabapentin Topiramate Suicide or
attempted
suicide

346 200,718 370 574 415 Cox 0.96 1.56 As-treated

Patorno,
2014 (21)

HealthCore CYP450-inducing
anticonvulsants

Other
anticonvulsants

Ischemic
coronary or
cerebrovascular
events

564 166,031 118 623 461 Cox 1.72 1.38 As-treated

Abbreviations: COX-2, cyclooxygenase 2; CYP450, cytochrome P-450; HR, hazard ratio; NSAIDs, nonsteroidal antiinflammatory drugs; OR, odds ratio; PACE, Pharmaceutical Assistance
Contract for the Elderly; SSRIs, selective serotonin reuptake inhibitors.

aReference treatment effects were estimated using unpartitioned data sets with high-dimensional propensity score–adjusted logistic regression models (example studies 1 and 2) or Cox
models (example studies 3–5).

bFixed follow-up refers to analyzing patients with respect to the exposure they initiated (as in an “intention-to-treat” analysis), whereas as-treated follow-up involves censoring patients
when they stop their initial exposure.
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share each patient’s exposure information across all data do-
mains (Figure 2). Sharing the exposure status alone without
any additional patient data will not make patients identifi-
able and should thus be acceptable to all data contributors
(though, should a contributor decline, their specific data do-
main could not be included in analysis). In our example
studies, we further assumed that it would also be possible to
share age and sex information between data domains, which
seems reasonable given that data contributors are unlikely to
consider this proprietary information. Once this data struc-
ture is in place, one can estimate the PS in each data domain
separately (the parallel approach) or estimate the PS in one
domain first and then pass that PS on to the next data do-
main for inclusion in a second PS model, iteratively working
through all available domains (the sequential approach).

Parallel and sequential PS approaches for vertically
partitioned data

In the parallel approach, a separate PS model was fitted
within each data domain. Each patient in each example study
had a demographic PS, an in-hospital PS, an outpatient PS,
and a prescription drug PS (Figure 2, top row). To estimate
the treatment effect, an outcome model using logistic or Cox
regression (depending on example study; Table 1) was fitted
including terms for exposure and some function of the 4
domain-specific PSs.

In the sequential approach, an initial PS model was fitted
within the first domain (e.g., prescription drugs). The esti-
mated PS was then passed to the second domain (e.g., in-
patient diagnoses and procedures). In the second domain, a
PS model was then fitted including terms for all domain-
specific covariates and the estimated PS from the first
domain. This PS was in turn passed to the third domain
(Figure 2, bottom row). In the third domain, a PS model
was fitted including terms for all domain-specific covariates
and the estimated PS from the second domain. This process
was repeated through all 4 domains until a final PS was pro-
duced. The treatment effect was estimated fitting a logistic
or Cox regression, depending on example study (Table 1),
including terms for exposure and the PS from the last
domain.

Variations of the parallel and sequential approaches

We explored several variations of the parallel and sequen-
tial approaches. For the parallel approach, we considered
1) including age and sex in the calculation of all domain-
specific PSs, 2) fitting a “last-stage” PS model (a logistic
model regressing treatment on the domain-specific PSs, their
squared terms, and pairwise interactions) to generate a sin-
gle PS used in the outcome model, and 3) for variants with a
last-stage model, including the final PS as a continuous term
versus PS-decile stratification (i.e., using indicators in the

ID X1 X2 … PS1 ID X3 X4 … PS2 ID X5 X6 … PS3 ID X7 X8 … PS4

45 … 0.76 … 0.65 … 0.39 … 0.85

… … … … … … … … … … … … … … … … … … … … … … …

39 … 0.52 … 0.47 … 0.23 … 0.5

ID X1 X2 … PS1 ID X3 X4 PS1 PS2 ID X5 X6 PS2 PS3 ID X7 X8 PS3 PS4

45 … 0.76 0.76 0.65 0.65 0.39 0.39 0.85

… … … … … … … … … … … … … … … … … … … … … … …

0.76 0.65 0.65 0.39 0.39 0.85

… … … … … … … … … … … … … … … … …
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Outpatient Diagnoses and 

Procedures
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A A A A

1 1 1 1 1 0 0 1 1 1 0 1 1 0 0

…

N 0 0 N 0 1 0 N 0 1 0 N 0 1 0

Fit logit(PS1) = X1 + X2 Fit logit(PS2) = X3 + X4 Fit logit(PS3) = X5 + X6 Fit logit(PS4) = X7 + X8

Fit logit(PS1) = X1 + X2 Fit logit(PS2) = X3 + X4 +
PS1

Fit logit(PS3) = X5 + X6 +
PS2

Fit logit(PS4) = X7 + X8 +
PS3
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Inpatient Diagnoses and 
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Outpatient Diagnoses and

Procedures Prescriptions

A A A A

1 1 1 1 1 0 0 1 1 1 0 1 1 0 0

…

N 0 39 0 … 0.52 N 0 1 0 0.52 0.47 N 0 1 0 0.47 0.23 N 0 1 0 0.23 0.5

PS1

PS1 to Outcome Model PS2 to Outcome Model PS3 to Outcome Model PS4 to Outcome Model
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Figure 2. Schematic representation of the parallel and sequential approaches to analysis of vertically distributed data. The analytical goal is to
estimate the effect of an exposure A on an outcome Y, wherein adjustment is needed for many covariates (X1–X8), on which data are available
from 4 separate sources (domains) and cannot be pooled in a single analytical database. In the parallel approach (top row), separate propensity
scores (PSs), PS1–PS4, are estimated within each domain, and the final analysis utilizes a function of the 4 domain-specific PSs—for example,
in the model Y = A + f (PS1 + PS2 + PS3 + PS4). In the sequential approach (bottom row), a PS (PS1) is estimated in the first domain and then
passed to the second domain. In the second domain, a PS is estimated on the basis of covariates in that domain and the PS from the first domain
(PS2). This process is repeated iteratively across all domains until a single final PS (PS4) is produced, which can be used in the final analysis—
for example, in the model Y = A + f (PS4). ID, identification.
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outcome model), yielding 6 possible variations. For the se-
quential approach, we considered 1) varying the order of the
domains in the process and 2) including the final PS as a con-
tinuous term versus PS-decile stratification (i.e., using indica-
tors in the outcome model), producing 48 possible variants.
In all analyses, PSs were used on the logit scale to allow for
nonlinearity. Further mention of PSs should be taken to refer
to the logit-scale PS. Additional information regarding these
variations can be found in Web Table 1 and the Web
Appendix (available at http://aje.oxfordjournals.org/).

In each study, the reference treatment effect estimate
against which all method variations were compared was
obtained from the unpartitioned analysis with a PS esti-
mated using all variables in all domains. Logistic or Cox
proportional hazards regression models were used, with
the PS included as a linear term or in deciles, depending on
the method variant being compared. Matching on the PS
and inverse probability weighting were not considered
here, as they could not be applied across some variations
of the parallel approach. While adjustment for a PS as a
linear term requires strong assumptions and is not often
done in practice, it has been shown to produce confound-
ing control comparable to that of other strategies, includ-
ing adjustment for quintiles or spline functions of the PS,
matching on the PS, and inverse probability weighting
(23). The outcome models used in this study were the
same as those used in the published reports of the example
studies.

Assessing the relative performance of the parallel and
sequential approaches

We defined the bias of a given variant of the parallel or
sequential approach as the difference between the estimated
treatment effect and the reference treatment effect on the log
scale (i.e., β − βvariant reference). We also examined bias on the
absolute scale (i.e., |β − β |variant reference ) and the mean
squared error (MSE) (i.e., (β − β ) )E ,variant reference

2 where
relevant. We used analysis of variance (ANOVA) to deter-
mine the impact of each variation of the parallel and sequen-
tial approaches on bias, pooling results from the 5 example
studies. ANOVA was conducted for the sequential ap-
proach, including a term for the 24 possible sequence per-
mutations of the 4 domains, as well as a term for using the
final PS as a continuous variable (vs. including deciles of
the PS). ANOVA was conducted for the parallel approach,
including a term for the inclusion of age and sex in the cal-
culation of all domain-specific PSs and a term for fitting a
last-stage PS model—that is, including a logistic model
regressing treatment on the domain-specific PSs, their
squared terms, and pairwise interactions. Among variants
of the parallel approach using a last-stage PS model, a sep-
arate ANOVA was conducted including a term for using
the last-stage PS as a continuous variable or in decile indi-
cators. Each ANOVA was repeated once with bias as the
outcome variable and once with the absolute value of the
bias as the outcome variable. When conducting ANOVA,
P values of 0.05 or smaller were considered to suggest
statistical significance.

Plasmode simulation study

In order to validate our findings in a setting with a known
treatment effect, we conducted a plasmode simulation study
(24, 25) using the cohort from study 1 as the basis for simu-
lation. To create each simulated cohort, we sampled 10,000
observations with replacement from the unpartitioned study
1 cohort, and their exposure and covariate data were re-
tained. Outcomes were then simulated from a logistic model
including the main effects of all of the covariates across all
domains (whose coefficients were estimated from a logistic
model in the full unpartitioned cohort) and a null term for
the main effect of treatment. We simulated 2,000 such
cohorts and performed all variations of the parallel and
sequential approaches in each. Final treatment-effect esti-
mates for each variation were averaged across the 2,000
simulations.

RESULTS

Overall, all tested variations produced point estimates
with the same direction of effect as the reference estimate.
Of the 270 variations of the parallel and sequential ap-
proaches considered, 203 (75%) produced effect estimates
within 5% of the relevant reference estimate, and 246 (91%)
of effect estimates were within 10% of the reference esti-
mate. There was substantial heterogeneity in performance
across data sets and approaches (Table 2). In 3 of 5 example
studies, the MSE was lower among variants of the sequen-
tial approach than among variants of the parallel approach.

Figure 3 shows the performance of the sequential method.
No substantial order effects were apparent. There was no evi-
dence that average bias varied by domain sequence (ANOVA
F(23, 215) = 0.69; 2-sided P = 0.85), nor was there evidence
that variants using the final PS in deciles had a higher or low-
er average bias than variants using the final PS as a continu-
ous variable (ANOVA F(1, 215) = 1.91; 2-sided P = 0.17).
When absolute bias was examined, there was evidence that
average absolute bias varied by domain sequence (ANOVA
F(23, 215) = 1.82; 2-sided P = 0.02). There was also some
evidence that variants using the final PS as decile indicators
produced a lower average absolute bias than variants using
the final PS as a continuous term (ANOVA F(1, 215) = 3.12;
2-sided P = 0.08) Table 3 shows a ranking of the sequences
by average absolute bias. Sequences ending with the demo-
graphic domain tended to have the highest average absolute
bias, followed by sequences ending with the drug domain,
while sequences starting with either of these domains tended
to have the lowest average absolute bias.

Among the 6 variations of the parallel approach (Web
Figure 1), there was no evidence that variants including age
and sex in every domain-specific PS model had a higher or
lower average bias than those not doing so (ANOVA F(1,
27) = 0.99; 2-sided P = 0.33). There was no evidence that
variants utilizing a last-stage PS model (i.e., a PS model in-
cluding all domain-specific PSs, their squares, and all pairwise
interactions between them) had a higher or lower average bias
than those not doing so (ANOVA F(1, 27) = 0.09; 2-sided
P = 0.77). Among those variants using a last-stage PS, there
was no evidence that variants using the PS in deciles had a
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higher or lower average bias than those not doing so (ANOVA
F(1, 18) = 0.07; 2-sided P= 0.79). When variants of the paral-
lel approach were compared on the absolute bias scale, there
was no evidence that those including age and sex in every
domain-specific PS model had a higher or lower average abso-
lute bias than those not doing so (ANOVA F(1, 27) = 0.71;
2-sided P = 0.41). There was no evidence that variants using a
last-stage PS model had a higher or lower average absolute
bias than those not doing so (ANOVA F(1, 27) = 0.31;
2-sided P = 0.58). Among variants using a last-stage PS,
there was no evidence that variants using the PS in deciles
had a higher or lower average absolute bias than those not
doing so (ANOVA F(1, 18) = 0.25; 2-sided P = 0.63).

Figure 4 shows the results of the plasmode simulation
study with treatment effect estimates averaged across 2,000
simulations and error bars displaying the 2.5th and 97.5th
percentiles (empirical 95% confidence intervals) of the treat-
ment effect estimate distributions. All 54 variants of the par-
allel and sequential methods produced treatment effect
estimates within 10% of the true simulation parameter on
the odds ratio scale. Among 48 variations of the sequential
method, all treatment effect estimates were within 5% of the
true simulation parameter on the odds ratio scale, as com-

pared with one-sixth (16.7%) among variants of the parallel
approach. Across the 2,000 simulated data sets, the MSE of
variants of the sequential approach was 0.0109, as compared
with 0.0134 among variants of the parallel approach (the
MSE of the “ideal” approach utilizing all covariates across
all domains in a single PS was 0.0105).

DISCUSSION

There is an imminent need in health-care database analy-
tics for methods that can incorporate vertically distributed
data into multivariable epidemiologic analyses; that need is
likely to increase as more health-care database research net-
works are funded and become more elaborate. In this proof-
of-concept study, we sought to determine whether existing
PS methods can be used when distinct subsets (i.e., data do-
mains) of covariates are available in separate locations but
cannot be physically pooled into a single database.

We found that these PS-based approaches generally pro-
duce effect estimates that fall within a close margin of what
can be achieved in a fully pooled database. This was vali-
dated in a plasmode simulation study, in which all variations
of the parallel and sequential approach produced estimated

Table 2. Estimated Treatment Effects in 5 Example Studies Using Variations of the Parallel and Sequential Approaches to Analysis of Vertically
Distributed Data

Study and Method No. of
Variations

Variations Within
5% of Reference

Estimatea MSEb
Reference Estimatesc Estimated OR or HRd

No. % OR HR Minimum Median Maximum

Schneeweiss, 2009 (18)

Parallel 6 6 100 0.0013 0.86/0.87 0.83 0.84 0.84

Sequential 48 48 100 0.0004 0.86/0.87 0.83 0.85 0.87

Schneeweiss, 2009 (18)

Parallel 6 5 83 0.0011 0.88/0.89 0.87 0.90 0.94

Sequential 48 36 75 0.0012 0.88/0.89 0.86 0.89 0.96

Schneeweiss, 2010 (19)

Parallel 6 5 83 0.0009 0.78/0.80 0.76 0.78 0.80

Sequential 48 35 73 0.0017 0.78/0.80 0.74 0.77 0.80

Patorno, 2010 (20)

Parallel 6 1 17 0.0227 1.53/1.38 1.48 1.76 1.97

Sequential 48 17 35 0.0069 1.53/1.38 1.52 1.65 1.81

Patorno, 2014 (21)

Parallel 6 2 23 0.0289 1.12/1.38 1.32 1.36 1.41

Sequential 48 48 100 0.0004 1.12/1.38 1.07 1.23 1.43

Abbreviations: HR, hazard ratio; MSE, mean squared error; OR, odds ratio; PS, propensity score.
a Percent change was calculated on the OR/HR scale—for example, as ×( − ) 100%OR OR

OR
variant reference

reference
.

b The MSE was calculated on the log scale (i.e., [β − β ]E variant reference
2).

c In each study, there were 2 reference estimates: 1) one generated by an outcome model including a continuous term for the full multivariable
PS (estimated using all covariates across all domains) and 2) another generated by an outcome model using indicators for deciles of the full multi-
variable PS. These were applied in accordance with the treatment of the final PS(s) in each variant of the parallel or sequential approach (continu-
ous or deciles). Depending on the study, the reference estimate was either an HR generated from a Cox proportional hazards model or an OR
generated from a logistic regression model.

d For studies 1 and 2, these are ORs; for studies 3–5, these are HRs.
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Sequence Permutation
A)

 Demo−Drugs−In−Out
 Demo−Drugs−Out−In
 Demo−In−Drugs−Out
 Demo−In−Out−Drugs
 Demo−Out−Drugs−In
 Demo−Out−In−Drugs
 Drugs−Demo−In−Out
 Drugs−Demo−Out−In
 Drugs−In−Demo−Out
 Drugs−In−Out−Demo
 Drugs−Out−Demo−In
 Drugs−Out−In−Demo
 In−Demo−Drugs−Out
 In−Demo−Out−Drugs
 In−Drugs−Demo−Out
 In−Drugs−Out−Demo
 In−Out−Demo−Drugs
 In−Out−Drugs−Demo
 Out−Demo−Drugs−In
 Out−Demo−In−Drugs
 Out−Drugs−Demo−In
 Out−Drugs−In−Demo
 Out−In−Demo−Drugs
 Out−In−Drugs−Demo

−0.10 −0.05 0.00 0.05 0.10

Difference in log(RR)
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B)
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 Demo−Drugs−Out−In
 Demo−In−Drugs−Out
 Demo−In−Out−Drugs
 Demo−Out−Drugs−In
 Demo−Out−In−Drugs
 Drugs−Demo−In−Out
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 Drugs−In−Demo−Out
 Drugs−In−Out−Demo
 Drugs−Out−Demo−In
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 In−Demo−Drugs−Out
 In−Demo−Out−Drugs
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 Out−Demo−In−Drugs
 Out−Drugs−Demo−In
 Out−Drugs−In−Demo
 Out−In−Demo−Drugs
 Out−In−Drugs−Demo

−0.10 −0.05 0.00 0.05 0.10

Difference in log(RR)

Sequence Permutation
C)

 Demo−Drugs−In−Out
 Demo−Drugs−Out−In
 Demo−In−Drugs−Out
 Demo−In−Out−Drugs
 Demo−Out−Drugs−In
 Demo−Out−In−Drugs
 Drugs−Demo−In−Out
 Drugs−Demo−Out−In
 Drugs−In−Demo−Out
 Drugs−In−Out−Demo
 Drugs−Out−Demo−In
 Drugs−Out−In−Demo
 In−Demo−Drugs−Out
 In−Demo−Out−Drugs
 In−Drugs−Demo−Out
 In−Drugs−Out−Demo
 In−Out−Demo−Drugs
 In−Out−Drugs−Demo
 Out−Demo−Drugs−In
 Out−Demo−In−Drugs
 Out−Drugs−Demo−In
 Out−Drugs−In−Demo
 Out−In−Demo−Drugs
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Figure 3. Variations of the sequential approach to analysis of vertically distributed data. The performance of the sequential approach to propen-
sity score (PS) estimation when data are vertically distributed is demonstrated here, showing the influence of domain ordering (vertical axis) and
inclusion of a single continuous term for the final PS in the outcome model (dark gray circles) versus decile-indicator (light gray circles) treatment
of the final PS in the outcome model. The 4 domains are outpatient (“Out”), inpatient (“In”), demographic factors (“Demo”), and prescriptions
(“Drugs”), giving 24 possible orderings. The horizontal axis shows the difference between the log hazard ratio or log odds ratio (both abbreviated
as risk ratio (RR)) and its reference estimate. Results are given separately for each of the 5 example studies: Schneeweiss et al., 2009 (18) (anal-
yses of cyclooxygenase 2 inhibitors (A) and statins (B)); Schneeweiss et al., 2010 (19) (C); Patorno et al., 2010 (20) (D); and Patorno et al., 2014
(21) (E).
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odds ratios within 10% of the true simulation parameter.
Thus, it may be possible to perform internally valid epide-
miologic investigations when privacy constraints prevent
pooling. However, some performance heterogeneity be-
tween example studies suggests that these methods should
undergo broader evaluation before being widely adopted.

Of the 2 main approaches tested, we observed a benefit
(lower MSE in 3 out of 5 studies) for the sequential method,
in which a PS is fitted in one domain and then iteratively
passed through PS models fitted in the remaining domains,
as compared with the parallel approach. Furthermore, in
simulation, we observed that all variations of the sequential
method outperformed all variations of the parallel method,

having estimates closer to the true simulation parameter, and
that variants of the sequential approach had a lower MSE
than did variants of the parallel approach. The sequential
method may better allow the final PS to reflect the joint effect
of the covariates on treatment than the parallel method,
which shares no information across domains. Furthermore,
the sequential method has the advantage of producing a sin-
gle final PS, which may be used by the analyst in the same
ways as a PS estimated in the traditional manner, including
matching, stratification, or inverse probability weighting,
though at the expense of increased analytical complexity.
When we examined bias on the absolute scale, there was
some evidence that the domain sequence used in the sequen-
tial method did affect performance and that sequences ending
with the demographic domain performed the worst; however,
the difference in bias between orders was quite small. We
also found evidence that, among sequential methods, those
including indicators for deciles of the final PS in the outcome
model performed better than those including a continuous
term for the final (logit) PS alone. While this benefit of dec-
iles was less apparent in the parallel approach, the strong as-
sumptions inherent in adjusting for a continuous PS should
caution readers against its use in practice.

While our results provide a proof-of-concept for the anal-
ysis of vertically distributed data, they do not account for
several factors, including 1) the varying sample size, num-
bers of exposed patients and outcome events, and degree of
confounding in each study; 2) the potential for imbalance in
covariate informativeness across domains; 3) the potential
for residual confounding within the reference estimates;
4) the uncertainty in the PS estimation procedure when estimat-
ing standard errors; and 5) additional ways to use the PS (e.g.,
matching, standardization, or inverse probability weighting).

Though it was not addressed in this study, missing data
will be a critical issue in the application of the proposed ap-
proaches to real-world vertically distributed data, as many
data sources (e.g., laboratory test-result databases) will not
contain records for every patient in a cohort. The presented
scenario is thus atypical in this regard, representing a seri-
ous limitation of the proposed approaches. Careful work is
needed to determine whether it will be possible to over-
come the missing-data problem, given data-partitioning
constraints. In order to apply established imputation proce-
dures in a vertically distributed setting, investigators would
need to assume that data in a given domain are missing at
random, conditional only on other covariates in that domain.
If this assumption is not met, it is possible that limited, non-
identifying data could be shared across data sources to aid
the imputation procedure, but this may be unreasonable to
data owners. Extensive research is needed to determine the
sensitivity of the proposed approaches to missing data.

Another critical issue in the implementation of the pro-
posed approaches will be the specification of important ef-
fect modifiers. In this regard, privacy constraints should
allow the sharing of information on a prespecified modify-
ing variable, such that it can be identified from whichever
domain it resides in and passed on to the final outcome mod-
el for inclusion as a product term or stratification factor.
However, investigators must take care to ensure that modi-
fying variables could not identify patients. This may be

Table 3. All Possible Orderings of 4 Domains in the Sequential
Propensity Score Approach to Analysis of Vertically Distributed Data,
Ranked According to Mean Absolute Bias

Rank Sequence of Domainsa Mean Absolute Biasb Mean Biasb

1 Demo-Drugs-Out-In 0.0149 −0.0087

2 Drugs-Demo-Out-In 0.0151 −0.0119

3 Demo-Out-Drugs-In 0.0165 −0.0021

4 Drugs-Demo-In-Out 0.0184 −0.0162

5 Out-Demo-Drugs-In 0.0185 −0.0025

6 Drugs-In-Demo-Out 0.0199 −0.0149

7 Demo-Drugs-In-Out 0.0208 −0.0108

8 Out-Drugs-Demo-In 0.0248 0.0001

9 Drugs-Out-Demo-In 0.0251 0.0088

10 Demo-In-Drugs-Out 0.0297 −0.0046

11 In-Drugs-Demo-Out 0.0323 −0.0022

12 In-Demo-Drugs-Out 0.0332 0.0012

13 Demo-Out-In-Drugs 0.0362 0.0086

14 Drugs-Out-In-Demo 0.0362 0.0184

15 Out-Demo-In-Drugs 0.0366 0.0123

16 Out-Drugs-In-Demo 0.0394 0.0106

17 Demo-In-Out-Drugs 0.0404 0.0076

18 In-Demo-Out-Drugs 0.0422 0.0135

19 Out-In-Demo-Drugs 0.0423 0.0179

20 In-Out-Demo-Drugs 0.0444 0.0183

21 Drugs-In-Out-Demo 0.0452 0.0136

22 Out-In-Drugs-Demo 0.0483 0.0215

23 In-Drugs-Out-Demo 0.0567 0.0192

24 In-Out-Drugs-Demo 0.0603 0.0232

a The 4 domains were outpatient (“Out”), inpatient (“In”), demo-
graphic factors (“Demo”), and prescriptions (“Drugs”), giving 24 pos-
sible orderings.

b For each domain, the mean absolute bias was calculated as
( β − β )E variant reference , and the mean bias was calculated as
(β − β )E variant reference . Each mean was based on 10 observations: 2

per each of the 5 example studies (one with the outcome model in-
cluding indicators for deciles of the final PS and one with the outcome
model including a linear term for the logit PS). Because the direction
of the bias differed between example studies, the absolute scale was
used when ranking.
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particularly limiting for detailed clinical investigations in
which researchers wish to examine results within care sites
or providers.

Our results from 5 example studies suggest that it may be
possible to perform multivariable confounding adjustment
when patient covariates are distributed across separate, pri-
vate domains. However, more extensive research is needed
to determine the optimal method for such analysis, espe-
cially with regard to variance estimation, the handling of
missing data, and applications to matching and weighting.
In light of these results, investigators should be cautioned
against employing any of the tested approaches in a verti-
cally distributed data setting without consideration of sev-
eral factors. A crucial consideration is the importance of the
covariates contained outside the primary analytical database.
The methods presented here are thus advisable when con-
founding control cannot be reasonably achieved without the
inclusion of covariate information residing in a physically
separated database. Investigators should also pay close atten-
tion to the modeling assumptions inherent in these approaches,
since each requires multiple models, and some models de-
pend on the correct specification of prior models. Finally,
while the proposed approaches appear to perform adequately
in some settings, their use for primary effect estimation at this
point may be premature. Where possible, it may be advanta-
geous to first perform analyses in the primary database only,
the results of which can then be compared with the results of

a parallel or sequential routine that includes additional data
sources.
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Figure 4. Performance of variations of the parallel and sequential propensity score approaches to analysis of vertically distributed data in simu-
lation. The plotted treatment effect estimates are presented on the log odds ratio (OR) scale and have been averaged across the 2,000 simula-
tions. All simulations were carried out under a true null treatment effect (log OR equal to 0). Error bars indicate the 2.5th and 97.5th percentiles
(empirical 95% confidence intervals) of the treatment effect distributions. The horizontal axis shows an index of the variations of the parallel and
sequential PS approaches. Symbol shape indicates the type of estimate: diamond, crude/unadjusted; squares, fully adjusted for all covariates
across all domains; circles, parallel approach; triangles, sequential approach. Details on these variants can be found in Web Table 1.
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Hospital from Novartis, Genentech, and Boehringer
Ingelheim unrelated to the topic of this study.
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