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Background: Menopausal hormone therapy (MHT) use has been consistently associated with a decreased risk of colorectal cancer
(CRC) in women. Our aim was to use a genome-wide gene–environment interaction analysis to identify genetic modifiers of CRC
risk associated with use of MHT.

Methods: We included 10 835 postmenopausal women (5419 cases and 5416 controls) from 10 studies. We evaluated use of any
MHT, oestrogen-only (E-only) and combined oestrogen–progestogen (EþP) hormone preparations. To test for multiplicative
interactions, we applied the empirical Bayes (EB) test as well as the Wald test in conventional case–control logistic regression as
primary tests. The Cocktail test was used as secondary test.

Results: The EB test identified a significant interaction between rs964293 at 20q13.2/CYP24A1 and EþP (interaction OR (95%
CIs)¼ 0.61 (0.52–0.72), P¼ 4.8� 10� 9). The secondary analysis also identified this interaction (Cocktail test OR¼ 0.64 (0.52–0.78),
P¼ 1.2� 10� 5 (alpha threshold¼ 3.1� 10� 4). The ORs for association between Eþ P and CRC risk by rs964293 genotype were as
follows: C/C, 0.96 (0.61–1.50); A/C, 0.61 (0.39–0.95) and A/A, 0.40 (0.22–0.73), respectively.

Conclusions: Our results indicate that rs964293 modifies the association between EþP and CRC risk. The variant is located near
CYP24A1, which encodes an enzyme involved in vitamin D metabolism. This novel finding offers additional insight into
downstream pathways of CRC etiopathogenesis.
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The use of menopausal hormone therapy (MHT) has been
consistently associated with a reduced risk of developing colorectal
cancer (CRC; Calle et al, 1995; Fernandez et al, 1998; Grodstein
et al, 1998, 1999; Anderson et al, 2004; Campbell et al, 2007;
Johnson et al, 2009; Rennert et al, 2009; Green et al, 2012; Lin et al,
2012). According to a recently published meta-analysis, the relative
risk (RR) of CRC was 0.74 (95% confidence interval (CI) 0.68–
0.81) for ever use of oestrogen plus progestogen (EþP) therapy
and 0.79 (95% CI 0.69–0.91) for ever use of oestrogen-only (E-
only; Lin et al, 2012). Compared to placebo, menopausal women
randomised to combined EþP hormone therapy in the Women’s
Health Initiative (WHI) also had a lower risk of CRC (Chlebowski
et al, 2004), although their cancers tended to be of higher stage
with poorer prognosis (Simon et al, 2012). However, randomisa-
tion to conjugated E-only in the WHI trial was not associated with
risk of CRC (Anderson et al, 2004).

The underlying mechanisms of how MHT use influences colon
carcinogenesis are largely unknown. Insight into potential
biological pathways could be gained by investigating genetic
modifiers of CRC risk associated with use of MHT. Furthermore,
certain loci associated with susceptibility for CRC may only be
evident in presence or absence of a specific environmental factor
such as use of MHT. Thus, studies that specifically examine the
association of MHT use with CRC risk in the context of varying
genetic backgrounds are needed. Previous studies that have
investigated gene–environment (G�E) interactions between single
nucleotide polymorphisms (SNPs), MHT use and CRC risk have
been largely based on candidate genes, which encompass only
limited genetic variance (Lin et al, 2010, 2011; Rudolph et al, 2011;
Slattery et al, 2011). A genome-wide scan to examine G� E
interactions is a crucial next step to comprehensively examine
additional variants and identify novel interactions with MHT. We
therefore carried out a genome-wide association analysis to assess
G�E interactions with use of MHT, using recently developed
statistical methods and data from several studies comprising in
total 5419 CRC cases and 5416 controls.

MATERIALS AND METHODS

Study participants. Our overall genome-wide association study
(GWAS) design has been described previously (Hutter et al, 2012;
Peters et al, 2013). In brief, this analysis is based on 10 studies
(a case–control study from the Colon Cancer Family Registry
(CCFR), and nine studies from the Genetics and Epidemiology of
Colorectal Cancer Consortium (GECCO)). Study-specific details
are described in Supplementary Methods. All cases were defined as
colorectal adenocarcinoma, and confirmed by medical records,
pathology reports or death certificate. All participants provided
written informed consent, and studies were approved by their
respective institutional review boards.

Harmonisation of environmental data. Information on basic
demographics and environmental risk factors was collected by
using in-person interviews and/or structured questionnaires, as
detailed previously (The Women’s Health Initiative Study Group,
1998; Colditz and Hankinson, 2005; Newcomb et al, 2007;
Hoffmeister et al, 2009). Postmenopausal status was defined by
using either (i) study-derived menopausal status, if available;
(ii) self-reported menopausal status, if study derived was not available;
or (iii) age X55, if study derived and self-report were not
available. MHT use was considered either as any MHT use, E-only
use or EþP use at reference time. Non-users (of any MHT) at
reference time were used as reference group. The reference time for
nested case–control studies was time of enrolment into the cohort
(VITAL, WHI and PLCO) or blood draw (NHS). For case–control
studies, the reference time was at diagnosis and 2 years prior to

diagnosis for CCFR and DALS. The harmonisation procedure is
described in more detail in the Supplementary Methods.

Genotyping, quality assurance/quality control and imputation.
All analyses were based on genotyped data generated from
genome-wide association scans and imputation to HapMap II.
Genotyped SNPs were excluded if they were triallelic, not assigned
an rs number, or were reported or observed as not performing
consistently across platforms. Furthermore, genotyped SNPs were
excluded based on call rate (o98%), lack of Hardy-Weinberg
equilibrium in controls (HWE, Po1� 10� 4) and minor allele
frequency (MAFo5%). Further details on DNA extraction,
genotyping and quality assurance/quality control for each of the
involved studies can be found in the Supplementary Methods and
in Peters et al (2012).

All autosomal SNPs of all studies were imputed to the CEU
population in HapMap II release 24, with the exception of OFCCR,
which was imputed to HapMap II release 22. CCFR set 1 was
imputed using IMPUTE (Marchini et al, 2007), OFCCR was
imputed using BEAGLE (Browning and Browning, 2007), and all
other studies were imputed using MACH (Li et al, 2010). Imputed
data were merged with genotype data such that genotype data were
used if a SNP had both types of data, unless there was a difference
in terms of reference allele frequency (40.1) or position (4100
base pairs), in which case imputed data were used. SNPs were
restricted based on per study MAF X5% of samples and per study
imputation accuracy (r240.3). After imputation and QC analyses,
a total of about 2.7 M SNPs were used in the analysis. The inflation
factor l (a measurement of the overdispersion of the test statistics
from the marginal association tests) obtained from the fixed-effect
meta-analysis of GWAS scans was 1.029, 1.027 and 1.027 for the
samples used for any MHT use, EþP and E-only analyses,
respectively, indicating little evidence of population substructure
(Quantile–quantile (Q–Q) plots in Supplementary Figure 1).

Statistical Methods. Models were adjusted for age at reference
time, centre and the first three principal components from
EIGENSTRAT (Price et al, 2006) to account for population
substructure. Each directly genotyped SNP was coded as 0, 1 or 2
copies of the variant allele. For imputed SNPs, we used the
expected number of copies of the variant allele (the ‘dosage’),
which has been shown to give unbiased test statistics (Jiao et al,
2011). SNPs are treated as continuous variables (i.e., assuming log-
additive effects). Each study was analysed separately using logistic
regression, and study-specific results were combined using fixed-
effect meta-analysis to obtain summary odds ratios (ORs) and 95%
CIs across studies. We calculated the heterogeneity P-values by
Woolf’s test (Woolf, 1955). Q–Q plots were assessed to determine
whether the distribution of the P-values was consistent with the
null distribution (except for the extreme tail). To test for
multiplicative interactions between SNPs and environmental risk
factors, we primarily used the empirical Bayes (EB) test (Mukherjee
and Chatterjee, 2008; Mukherjee et al, 2008, 2010) given that this
test can be more powerful than the conventional case–control
logistic regression analysis while maintaining the desired type I
error. It calculates the interaction log OR that corresponds to a
weighted average of the case-only and case–control estimators.
Thus, the method makes use of the greater precision of the case-
only estimator by simultaneously reducing the chance of generat-
ing biased estimates due to violations of the assumption of gene–
environment independence in controls (Mukherjee and Chatterjee,
2008). We modelled the SNP by environment (G�E) interaction
by the product of the SNP and the dichotomised environmental
variable. A two-sided P-value o5� 10� 8 was considered genome-
wide significant, yielding a genome-wide significance level of 0.05
(Risch and Merikangas, 1996; International HapMap Consortium,
2005; Wellcome Trust Case Control Consortium, 2007; Dudbridge
and Gusnanto, 2008; Hoggart et al, 2008; Pe’er et al, 2008).
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We secondarily used the multiplicative Cocktail method (Hsu et al,
2012), to evaluate how robust the findings were under the use
of an alternative test to evaluate a multiplicative interaction
(Supplementary Methods).

To estimate the effects of the environment variable stratified by
genotype, we fit the following model: logit(d)¼ b0þ b1eþ c1p1þ
c2p2þ b1p1eþ b2p2eþ covariates, where p1 and p2 are the imputa-
tion posterior probabilities for genotype A/B, B/B. Then the
stratified effects of environment variable can be estimated as b̂1,
b̂1b̂1 and b̂1b̂2 for genotypes A/A, A/B and B/B, respectively. The
s.e. are estimated by using the standard formula for a linear
combination of two parameters based on the covariance matrix of
these parameters.

We estimated the CRC incidence rates associated with EþP use
among individuals with each genotype of SNPs, which would
provide more direct interpretation for G�E interaction effects on
public health. We based the estimation of the incidence rate on the
Surveillance, Epidemiology, and End Results (SEER) age-adjusted
CRC incidence rate (denoted by ‘I’) 1992–2010 among the White
population, which is 59.5 per 100 000 women per year. By using I,
we estimated the reference incidence rate of CRC (denoted by ‘Iref’)
using the population attributable risk (PAR), which is estimated by
one minus the average of the inverse of estimated risk score
exp(�X b) in cases (Bruzzi et al, 1985). Specifically, the formula
for computing the PAR estimator is:

PAR ¼ 1

P

j

Yj exp Xjb
� �

P

j

Yj
;

where Yj¼ 1 for case and 0 for control; Xj¼ covariates; b¼
estimated regression coefficients in the logistic regression analysis.
We can then estimate the reference incidence rate of CRC for X¼ 0
by Iref ¼ (1�PAR)� I (Gail et al, 1989). On the basis of this
reference incidence rate of CRC (i.e., Iref), we further calculated the
CRC incidence rate for each subgroup defined by genotypes of the
SNP according to EþP use or non-use by multiplying the Iref with
each corresponding OR estimate. We calculated the 95% CIs using
a resampling technique with 1000 weighted bootstraps. Since SEER
incidence rates are based on a large number of individuals, the
uncertainty of ‘I’ is negligible compared to the uncertainty from the
PAR estimate, and hence was not considered in the calculation of
95% CIs.

Methods used for functional follow-up on promising loci are
described in the Supplementary Methods.

RESULTS

Our study population comprised 10 835 menopausal women: 5419
cases and 5416 controls. For all 10 835 women information on use
of any MHT was available and information on the type of MHT
preparation was available for 9004 participants. At reference time,
3384 women used any MHT (31.2%), 1283 (11.8%) used EþP and
1606 (14.8%) used E-only (Supplementary Table 1). MHT use was
inversely associated with the risk of CRC. Compared to non-users
of any MHT at reference time, the OR for CRC was 0.70 (95% CI
0.62–0.79, P¼ 1.9� 10� 9, P for heterogeneity (phet)¼ 0.14) for
women using any MHT preparation, 0.76 (95% CI 0.64–0.90,
P¼ 0.0015, phet¼ 0.049) for women who used EþP and 0.71
(95% CI 0.61–0.84, P¼ 7.1� 10� 5, phet¼ 0.017) for women who
used E-only.

The EB test identified a significant interaction of the variant
rs964293 with EþP, with OR¼ 0.61 (95% CI 0.52–0.72,
P¼ 4.8� 10� 9). This interaction showed borderline evidence of
heterogeneity across studies (phet¼ 0.044; Figure 1A). The same
variant (rs964293) showed an interaction with EþP use on CRC

risk in our secondary analysis, using the Cocktail test (OR¼ 0.64,
95% CI 0.52–0.78, P¼ 1.2� 10� 5, alpha threshold for significance
in the group where the variant is assigned according to its
rank¼ 3.1� 10� 4). Table 1 summarises the results of the
interaction analyses of rs964293 with MHT use. When testing
for interaction between rs964293 and use of any MHT or E-only,
no significant results were observed (Table 1).

Table 2 presents the association of the different strata of
MHT by rs964293 with CRC risk. The OR of CRC for women
taking EþP compared with women not using MHT is 0.96
(95% CI 0.61–1.50, P¼ 0.84), 0.61 (95% CI 0.39–0.95, P¼ 0.03)
and 0.40 (95% CI 0.22–0.73, P¼ 0.0026) for women with C/C, A/C
and A/A genotype of rs964293, respectively (Table 2). The per
study ORs of EþP on CRC stratified by rs964293 genotype are
shown in Figure 2A–C. No significant heterogeneity between study
wise estimates was observed (phet¼ 0.3, 0.66 and 0.23,
respectively).

The variant rs964293 is located in an intergenic region 28 kb
upstream of CYP24A1 on chromosome 20q13.2. Supplementary
Figure 2 shows the interaction P-value (EB test) of rs964293 as well
as SNPs surrounding rs964293 in region 20q13.2. The variant
rs964293 was directly genotyped in five of the study sets included
in the analysis and imputation accuracy was high in the remaining
six study sets (r2 ranging from 0.82 to 0.99). The MAF ranged from
0.34 to 0.38 in the 11 study sets.

The SNP rs964293 is in moderate LD (r2¼ 0.61 in 1000
Genomes pilot CEU) with a strong functional candidate,
rs6023015. Our in silico functional analysis demonstrates that this
SNP is located in a region with strong DNase hypersensitivity and
histone methylation patterns consistent with enhancer activity.
Supplementary Figure 3 shows how these two patterns of DNase
hypersensitivity and histone methylation are stronger in some
cancerous cell lines (including the CRC cell lines CACO2
and HCT-116) relative to non-cancerous cell lines. ChIP-seq
experiments indicate that several transcription factors bind to this
region (Supplementary Figure 4). In data from 169 tissue
samples of the transverse colon available through the GTEx
portal (Ardlie et al, 2015), both variants, rs964293 and rs6023015,
are expression quantitative trait loci (eQTL) for CYP24A1
expression (P¼ 0.037 and 0.018, respectively). Expression of
CYP24A1 varied slightly stronger by genotypes of another SNP
rs2256649 in LD with rs964293 (r2¼ 0.60 in 1000 Genomes pilot
CEU), with P¼ 0.0069. Compared to homozygous carriers of the
wild-type allele, expression of CYP24A1 was higher in homo-
zygous carriers of the minor allele for all three SNPs.
Supplementary Figure 5 displays the distribution of the rank
normalised gene expression of CYP24A1 by genotypes of
rs964293, rs6023015 and rs2256649.

We estimated absolute risks for CRC according to the use of
EþP and genotypes of rs964293 and rs6023015 (Table 3).
Compared to not-using EþP and carrying the wild-type CC
genotype of rs964293, using EþP was associated with 30.6 fewer
cases of CRC within a year among carriers of the AA genotype.
Likewise, carrying the CC genotype of rs6023015 and using EþP
was associated with 32.4 fewer cases of CRC within a year when
compared to carrying the GG genotype of rs6023015 and not-using
EþP.

Aside from results reported above, we did not observe any
additional genome-wide significant G�E interactions with use of
EþP and none for any MHT and E-only use.

DISCUSSION

In this study, including over 10 000 women, we evaluated genome-
wide G�E interactions with the use of any MHT preparation as
well as separately with use of Eþ P and of E-only. Employing the
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powerful yet robust EB method, we found evidence of an
interaction between the variant rs964293 at 20q13.2/CYP24A1
and use of EþP.

Although most prior studies of G� E interactions in CRC have
utilised a candidate gene approach (Slattery et al, 2010; Zhong et al,
2013), Figueiredo et al (2011), examined G�E interactions
using a genome-wide scan and 14 environmental variables,
including MHT use, and did not observe any genome-wide
significant associations within the CCFR and OFCCR study.
However, that study had limited power to detect any significant
G�MHT interactions since it included only 572 highly selected
CRC cases of menopausal women (age o50 years or with a family
history) and did not assess the possible differential interaction with
use of MHT according to type of preparation.

Our finding of a genome-wide significant interaction between
rs964293 and use of Eþ P has convincing biologic plausibility.
This SNP is located in an intergenic region 28 kb upstream of
CYP24A1. As it is not in strong LD with any coding variants, we
hypothesised that the underlying causal variant(s) exerts its effect
through a regulatory mechanism. We found that rs964293 is in
moderate LD with rs6023015 (r240.61 in CEU), which lies in a
putative enhancer region for CYP24A1. The rs6023015 SNP was
imputed in all 11 studies with high accuracy (mean r2¼ 0.95, range
0.87–1.00), and interaction and association of EþP across strata
defined by number of minor alleles of rs6023015 paralleled that of
rs964293 (Supplementary Table 4 and Figure 2D–F). Also the
estimated ORs for interaction of rs6023015 with use of Eþ P
were comparable to those found for rs964293 (Figure 1C and D),
but P-values observed with the EB test were less extreme
(P¼ 2.8� 10� 6). Both SNPs are eQTL for CYP24A1 expression
in 169 normal tissue samples of the transverse colon. CYP24A1
expression was increased in homozygous carriers of the minor
allele compared to homozygous carriers of the wild-type allele
(Supplementary Figure 5). Details of the in silico functional
analyses of rs6023015 are provided in the Supplementary Methods.

CYP24A1 codes for a protein that belongs to the cytochrome
P450 family. These mitochondrial proteins are monooxygenases
that catalyse several reactions involved in drug metabolism and

synthesis of cholesterol, steroids, sex hormones and other lipids.
Specifically, CYP24A1 plays a key role in the metabolism of the
steroid hormone vitamin D by degrading its active form. CYP24A1
is highly expressed in malignant colon tumours as compared with
healthy colonic epithelium at both the mRNA (Bareis et al, 2001)
and protein level (Matusiak and Benya, 2007), and some variants
in CYP24A1 have been associated with CRC risk in candidate gene
studies (Dong et al, 2009). Vitamin D refers to a group of lipid
soluble cholesterol-based compounds that, in contrast with other
vitamins, can be synthesised endogenously. The active form of
vitamin D exerts several functions relevant to regulation of tumour
pathogenesis and progression, such as the activation of apoptotic
pathways, anti-proliferative effects and angiogenesis inhibition
(Deeb et al, 2007). Substantial experimental and epidemiological
data support an inverse association with risk of CRC (Chan and
Giovannucci, 2010). Moreover, there is evidence linking the
vitamin D pathway and sex hormones in CRC aetiology.
A secondary analysis of data from the WHI suggested that the
association between low-dose vitamin D plus calcium supplemen-
tation and CRC risk is modified by MHT (E-only and EþP; Ding
et al, 2008). Women randomised to receive calcium and 400
international units (IU) vitamin D3 supplementation in the
placebo arms of the factorial oestrogen therapy trials were at
suggestively decreased risk of developing CRC (HR¼ 0.71, 95% CI
0.46–1.09) compared to women randomised to receive calcium,
vitamin D3 and concurrent MHT (HR¼ 1.30 (95% CI 0.83–2.03),
P for interaction¼ 0.05; Ding and Giovannucci, 2009). Further-
more, the difference in the association of calcium and vitamin D
supplementation with CRC between users and non-users of MHT
appeared to be more evident for EþP than for E-only.

The results observed here suggest that CYP24A1 may be
regulated by sex hormones exposure and that the modifying effect
observed with rs964293 may be caused by a disruption of the
increased CYP24A1 expression induced by sex hormones expo-
sure. Alternatively, given that we found an interaction only with
EþP exposure and not with E-only intake, CYP24A1 may be a
metabolising enzyme for progestogens but not oestrogen. Taken
together, this evidence provides a strong rationale for additional
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Figure 1. Forest plot for meta-analysis of the interaction between SNP and oestrogen plus progestogen use, using the empirical Bayes (A and C)
and case–control logistic regression method (B and D) for rs964293 (A and B) and rs6023015 (C and D). DALS and PLCO studies are not plotted
because they do not have information on the type of hormone compound.
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functional studies to determine the role of rs964293/rs6023015 in
CYP24A1, particularly in relation to exposure to exogenous Eþ P
in colorectal carcinogenesis.

Our study has several strengths. First, our large sample size
facilitated the detection of genome-wide G� E interactions even
accounting for the stringent threshold for significance necessary for
control of type I error and the generally small magnitude of effect
modification that can be reasonably expected. We followed a

‘whole set’ approach rather than a ‘discovery-validation’ strategy to
maximise efficiency (Skol et al, 2006). Second, as previously
described (Hutter et al, 2012), we have carefully harmonised data
on a range of environmental variables, including MHT use across
10 studies. Third, two different methods (EB and Cocktail) to
evaluate G�E interaction identified the same variant as having a
significant G�E interaction, providing greater confidence that this
association is not a false positive finding (although the EB test can

Table 1. Result of the interaction tests for any MHT use, EþP use and E-only use and rs964293

Any MHT preparation EþP E-only

Test OR (95% CI) P P*a phet OR (95% CI) P P*a phet OR (95% CI) P P*a phet
Empirical Bayes 0.91 (0.80–1.02) 0.11 5�10� 8 0.11 0.61 (0.52–0.72) 4.8� 10� 9 5� 10� 8 0.043 1.01 (0.85–1.20) 0.90 5� 10� 8 0.27

Case–control 1.02 (0.89–1.17) 0.81 5�10� 8 0.021 0.64 (0.52–0.78) 1.2� 10� 5 5� 10� 8 0.028 1.08 (0.90–1.30) 0.38 5� 10� 8 0.068

Cocktailb 1.02 (0.89–1.17) 0.81 0.005 (1) 0.021 0.64 (0.52–0.78) 1.2� 10� 5 3.1� 10� 4 (3) 0.028 1.08 (0.90–1.30) 0.38 Not in top 9
groups

0.068

Abbreviations: CI¼ confidence interval; E-only¼oestrogen-only; EþP¼oestrogen plus progestogen; MHT¼menopausal hormone therapy; OR¼odds ratio.
aP*: alpha threshold for significance, in brackets: group in weighted testing.
brs964293 was selected based on correlation screen, the case–control test was used in the testing step.

Table 2. Associations with colorectal cancer risk stratified by EþP use and genotypes of rs964293

rs964293 genotype

CC AC AA

Strata of
EþP use N Ca/Cob ORa (95% CI) P N Ca/Cob ORa (95% CI) P N Ca/Cob ORa (95% CI) P

per allele ORa

(95% CI) for
rs964293 P

No 1219/1309 1 (Ref.) 1504/1455 1.04 (0.74–1.47) 0.82 477/472 1.30 (0.77–2.18) 0.33 1.15 (0.89–1.50) 0.28

Yes 269/295 0.97 (0.62–1.52) 0.90 241/343 0.64 (0.36–1.12) 0.12 44/92 0.49 (0.22–1.06) 0.071 0.52 (0.26–1.01) 0.052

ORa (95% CI) for
EþP use

0.96 (0.61–1.50) 0.84 0.61 (0.39–0.95) 0.03 0.40 (0.22–0.73) 0.0026

Abbreviations: CI¼ confidence interval; EþP¼oestrogen plus progestogen; OR¼odds ratio.
aORs are adjusted for age, centre and the three principal components from EIGENSTRAT.
bNumbers are expected frequencies based on imputed data.
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Figure 2. Forest plot for meta-analysis of the marginal association of oestrogen plus progestogen with colorectal cancer risk in strata defined by
zero, one or two minor alleles of rs964293 (A, B and C, respectively) and rs6023015 (D, E and F, respectively).
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be part of the Cocktail test itself, this was not the case for
rs964293). The magnitude of the interaction between rs964293 and
the use of EþP yielded by the traditional case–control logistic
regression analysis was similar to the one found by the EB test
(OR¼ 0.64 and 0.61, respectively; Figure 1 and Table 1), though
it did not reach the threshold of genome-wide significance
(P¼ 1.2� 10� 5). We observed some degree of heterogeneity
among studies for the interaction of rs964293 with EþP
(phet¼ 0.044). Figure 1 shows that the OR for interaction is p1
for all the studies but the VITAL, which constitutes about 2.5% of
the total sample size. We do not consider this heterogeneity as a
strong limitation to the results of the study.

The use of EþP for the purpose of chemoprevention is not
routinely recommended for the general population due to concerns
about the potential adverse consequences of long-term exposure.
However, our results suggest the possibility that the benefit of
EþP may be enhanced in women carrying genetic variants at
rs964293 (Table 3). In conjunction with other strategies for risk-
stratification and after its evaluation across other relevant clinical
outcomes, this finding could be exploited to more specifically
identify individuals for whom the benefits of chemoprevention
may outweigh potential risks (Collins, 2015).

In summary, we have identified a CYP24A1-related variant
as effect modifier of CRC risk associated with use of Eþ P
using a genome-wide approach. This finding offers important
insight into the role of EþP and its downstream pathways,
including its potential interaction with vitamin D in the
etiopathogenesis of CRC and supports the need for further
studies to confirm the involvement of CYP24A1 in modulating
CRC risk.
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